Membrane-Based Separation Methods for Effective Contaminant Removal in Wastewater and Water Systems

Dr. Emilia Vasquez1* and Dr. Ricardo Mendoza2

1*Senior Researcher, Water Purification Division, National University of Mexico (UNAM), Mexico.

²Professor, Water Purification Division, National University of Mexico (UNAM), Mexico.

Abstract—Potential Emerging Pollutants (PEPs), including dangerous chemicals, toxic metals, and biological waste, significantly endanger human well-being, hygiene, and ecological systems by contaminating ecosystems and water supplies. The PEPs come from diverse industrial Wastewater (WW) emissions, including those from the drugs, food, and metals manufacturing sectors. These PEPs in touch with water contaminate the water and disrupt aquatic life. A multitude of techniques have been employed for the treatment of effluents and the separation of harmful compounds and metals. Among these systems, Membrane-Based Separating Processes (MBSPs) surpass traditional methods of delivering pure water from WW streams at a cost-effective rate with minimal energy consumption. This research discusses Micro Filtering (MF), Ultrafiltering (UF), Nano Filtering (NF), Reversed Osmosis (RO), Forward Osmosis (FO), and hybrid methods, referencing findings from the past decades.

Keywords--- Membrane-Based Separation, Contaminant Removal, Wastewater, Pollutants.

Received: 18 - 09 - 2024; Revised: 23 - 10 - 2024; Accepted: 20 - 11 - 2024; Published: 27 - 12 - 2024

I. Introduction

Potential Emerging Pollutants (PEPs) are once more prompting concerns over water quality due to the significant impacts of prolonged exposure, even in minimal quantities in potable or surface waters (Balakumar et al., 2024). For years, such quantities have been generally overlooked, challenging to quantify, or unquantifiable by existing analytical techniques. A temporal delay inherently exists between the recognition of specific contamination and its incorporation into any regulatory framework governing water purity. The European regulation on consumption quality does not address endocrine-disrupting substances, drugs, or personal-care items; nevertheless, the new directive incorporates perfluorinated and three endocrine-disrupting chemicals. The rules for surface water, addressing ecological quality requirements for 45 chemical substances, encompass 14 endocrine-disrupting components as per the European databases (Zhong et al., 2022). However, they exclude pharmaceuticals as well as private care items. The watch list of regulated chemical compounds inside the European Commission's implementation order outlines an alternative method for rectifying the situation. The list comprises 18 pollutants of rising concern, including hormones, macrolide antibiotics, and neurotoxic herbicides (Méndez et al., 2017). The compounds enumerated are under surveillance in European nations and are incorporated into their water guidelines.

Figure 1: Papers Published

Figure 1 illustrates that the volume of research articles concerning electrochemical cells and membrane technology applications has steadily risen over the past two decades, particularly post-2018, when the growth rate markedly sped up, sustaining an annual increase of 12%. Post-2020, the growth rate exceeded 15%, indicating a heightened focus on ECs in the surroundings, alongside extensive exploration of membrane technology.

There is an urgent necessity for technological innovation to preserve the already stressed potable water supply essential for human wellness and sanitation. Although distillation-based techniques prevail in industrial-scale water filtration, increased efforts have been focused on developing cost-effective, environmentally friendly, and uncomplicated procedures, such as Membrane-Based Separation Procedures (MBSPs), to provide access to clean water (Tanudjaja et al., 2019). Although numerous MBSPs, particularly hybrid methods, have become known as viable Water Treatment (WT) solutions, only a limited number have proven beneficial for large-scale implementation (Davoodbeygi et al., 2023).

PEPs come from many industrial operations, and the effluents released at the source necessitate clear identification, separateness, and management; these contaminants can significantly threaten water quality and biodiversity. Figure 2 shows the amount of chemicals produced yearly. The PEP-contaminated Wastewater (WW) frequently traverses numerous detrimental paths, contaminating water sources utilized for diverse human consumption (Baguma et al., 2023). Managing PEPs is a significant challenge, as most traditional WW Treatment (WWT) methods have consistently demonstrated inefficacy in removing even trace levels of harmful substances (Sangamnere et al., 2023). In WW sludge and dirt, PEPs immediately permeate from the waste flows to the drinking water, complicating treatment processes further.

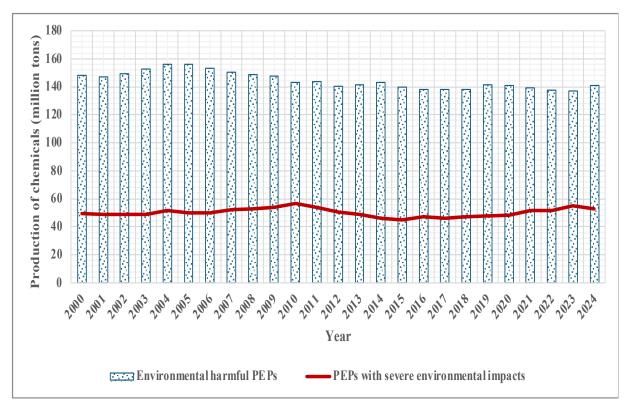


Figure 2: Chemicals Produced Analysis

II. MBSP Techniques for Water Purification

Membrane separation processes utilizing pressure gradients as the driving force represent one of the most promising methods for purifying water (Song et al., 2021). The methods in question include Micro Filtering (MF), Ultrafiltering (UF), Nano Filtering (NF), and Reversed Osmosis (RO). The membranes provide barriers that obstruct the passage of various contaminants and eliminate bacteria, suspended particulates, and colloidal substances or suspended solids. The systems function by blocking the transmission of micropollutants, establishing a barrier to impede contaminants, and utilizing diverse separating processes. These comprise a physical system that operates without overheating and features firm selective control, among its advantages relative to other approaches. The MBSP operates simply, enabling compact initiatives that do not necessitate extensive space for execution. They can be integrated with alternative treatment approaches without supplementary goods. The dimension of the pores is not the sole determinant of the MBSP. Electrostatic and steric reactions arise among the membrane surfaces and solutes, substantially affecting separation efficiency. The pH range and the Isoelectric Point (IEP) significantly influence the hydrophilicity and absorption of materials.

Many investigations have been undertaken regarding the mechanics of solute transport across membranes. Further research is necessary to comprehend the impact of solute real estate, membrane characteristics, feed water conditions, and operational variables on the mechanism to enhance the approach and augment the efficiency and longevity of membranes.

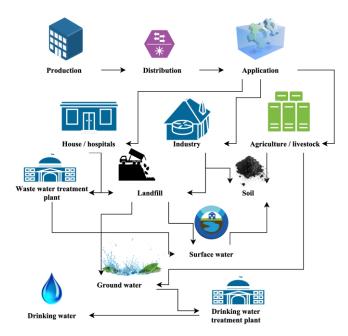


Figure 3: Contaminant Removal Process from Water and WW

Membrane substances can vary significantly based on their chemical makeup and the type of treatment employed. Membrane manufacture seeks to produce an optimal material that possesses durability, facilitates high flow rates, and selectively allows the appropriate permeate element to pass through. The last two are in confrontation with each other. Excellent selectivity is typically attainable using membranes with diminutive pores, restricting substantial hydraulic flow. The membrane's impedance is precisely proportional to its width. The optimal attributes of membrane physical components include a thin material layer, a limited pore size spectrum, and elevated porosity.

III. MBSP Models

MBSP Techniques for the Elimination of New Pollutants

PEPs include various pollutants, including pharmaceuticals, insecticides, hormones, and Endocrine-Disrupting Chemicals (EDCs). They often exist in quantities of micrograms or nanograms per liter; even at these levels, they can impact aquatic biota. Their distinct chemical properties restrict their removal in ordinary water or WWT plants, which are not engineered for this function.

MBSP has considerable advantages over alternative methods employed for the removal of PEPs. The MBSPs are extensively utilized in numerous applications, yielding high-quality penetrates without generating harmful by-products or metabolites. Notwithstanding the extensive variety of techniques, full-scale Advanced Oxidizing Procedures (AOPs) have predominantly been employed for potable WT and reclamation.

The study utilized a Membrane Bioreactor (MBR) to assess its efficacy in filtering industrial WW with pesticides and toxic substances. The research findings highlight the necessity of integrating MF or UF with the current standard preparation of RO to enhance final water purity and mitigate fouling issues, hence lowering operational costs. In MBRs, fouling issues primarily arise from the presence of vegetation. The combination of various treatment techniques has been evaluated as an intriguing option in MBSP. A field experiment investigated the efficacy of biological therapy, flocculation, and UF membranes, individually and in combination, in removing PEPs. The combination of UF methods produced superior outcomes compared to their individual use, achieving the most significant removal rates for 15 out of 17 chemicals.

Obstacles and Prospective Outlooks

The most frequently referenced terms in articles concerning the challenges of industrial membrane administration include technological advances, combined, effective, planning, fabrication, use, and layout. The word cloud reveals the term graphene, which poses a hurdle in the large-scale production of synthetic materials. Using Carbon Nanotubes (CNT) presents several disadvantages, such as inadequate dispersion in

water solutions and diminished sorption connection, which hinders their application in the large-scale manufacture of organic and inorganic CNT composites.

Attaining optimal membrane performance presents a significant problem. The layout of the membranes, including pore size and material shipment, directly affects the effectiveness of the method of filtration. Large-scale membrane operations, such as corporate or business uses, necessitate extensive membrane areas. Most investigations are conducted on a laboratory size and necessitate massive scales to assess the financial viability of membranes accurately.

The primary difficulties for the industrial use of membranes are improved fouling control, increased cost-effectiveness, excellent pollution removal, and strategic placement in application domains. Commutation remains a significant challenge in membrane-based processes. This results from the accumulation of contaminants on the surface, leading to fouling and a reduction in the effectiveness of treatment. This issue is frequently encountered and constitutes a primary challenge in MBSP.

The utilization of membranes is a problem that has been examined. The membranes possess a limited lifespan relative to alternative treatment procedures, thereby elevating the associated expenses of the process. This results from the degradation of membranes caused by chemical-based cleaning procedures, essential for minimizing fouling. The degradation results from the buildup or adhesion of microorganisms on the membrane surfaces and into the pores therein.

IV. Conventional Membrane Technology for the Elimination of PEPs

Membrane systems have experienced decades of advancement and have emerged as one of the most extensively utilized WT methods. Conventional membrane technologies encompass MF, UF, NF, FO, and RO. Initially, MF and UF were frequently employed in sewage and water treatment facilities. They utilize sieving methods to eliminate bigger particles, substantial molecule organic compounds, or microbes, functioning at comparatively low pressures, reducing energy consumption and expenses. NF and RO are predominantly utilized for ion separating and possess stringent operational requirements. In recent years, NF and RO have been implemented in urban WT facilities to enhance water quality regulations. Due to their small pore size and electrostatic attraction, NF and RO effectively eliminate most contaminants, including bacteria, chemical compounds, and ions. NF and RO provide benefits in the elimination of ECs. FO has garnered significant interest recently due to its reduced energy usage and minimal membrane fouling advantages. The efficacy of FO in eliminating pollutants is influenced by the size of the target contaminants, their imposed level, and the adsorption characteristics of both the pollutants and the Membrane.

The study evaluated the impact of hollow fiber FO membranes on 25 effluent contaminants, 18 of which attained a removal efficiency exceeding 98%. The limited studies on removing PEPs in FO have predominantly concentrated on laboratory-scale and simulated WW scenarios.

NF and RO

Investigations into membrane technology for electrochemical cells commenced quite late. Initially, researchers focused on the removal efficiency of commercial NF and RO membranes, investigating the relevant operating parameters. Research has sought to address EDCs in textile effluent using commercial nanofiltration membranes. Of the 17 EDCs, 10 were successfully eliminated, with effluent concentrations falling below measurable thresholds, thereby validating the efficacy of NF membranes for EDC removal. The high-pressure membranes have demonstrated encouraging outcomes in treating PEPs. Findings from studies from a drinking WT plant indicate that the RO membrane achieved a removal efficiency of over 99%, markedly surpassing that of conventional methods. The retention ability of NF membranes with marginally higher pore sizes is constrained and influenced by the characteristics of the contaminants.

Despite the maturity of polyamide NF membrane research and its extensive applications, numerous issues hinder the advancement of membrane technology, including the trade-off impact and fouling of the membrane. Creating a practical membrane with advantageous capture capacities presents a possible avenue for addressing these obstacles.

MBR

MBRs proficiently integrate microbial decomposition with membrane division, facilitating the preservation of microorganisms within WW. This separation reduces the separation of the Sediment Retention Time (SRT) and the Hydraulic Retention Time (HRT), enabling the artificial regulation of predominant bacterial strains in

the reactor by modifying the sludge age to improve treatment efficacy. MBRs possess a compact architecture, consume minimal space, and facilitate straightforward integration for centralized management, resulting in their extensive utilization in WT facilities globally. MBRs are categorized into segregated and combined varieties with negligible differences in efficacy. The primary distinction is in the treated water circulation, as integrated reactors provide superior cost efficiency without requiring supplementary circulation. Membrane bearers in MBRs can be chosen according to the context of the application. UF and MF membranes are predominantly utilized; FO and NF membranes have been effectively employed in MRs recently. The fundamental idea of MBRs in pollution removal is based on adsorption and biological breakdown.

In addition to the restrictions related to pollutant characteristics, another drawback of MBRs is the extended exposure of microorganisms to certain WW circumstances, which heightens concerns regarding potential ecological risks. Extended exposure to elevated levels of antibiotics results in alterations in resistant bacteria. Inadequate management of leftover sludge results in the transfer of germs and pollution of the environment, which pertains to ongoing concerns regarding resistant antibiotics and ecological damage.

Integrated Membrane Technology

UF membranes constitute the fundamental component of third-generation drinking water filtration structures, successfully mitigating biological safety issues in drinking water that have significantly developed over the past two decades and are extensively utilized in urban WT facilities. The world's biggest UF membrane water purification facility has a daily capacity for processing of 1.5 million tonnes and is cost-effective and reliable. Coupled systems have garnered considerable attention. The efficient integration of processes can surpass the treatment constraints of singular technology. Research has investigated the efficacy of procedures in WT contaminated with microplastics. Coagulation displayed a restricted efficacy in removing PEPs, averaging about 12-18%, but the integrated approach, utilizing the barrier created by UF membranes, showed effective removal. Membrane fouling has been examined in integrated processes. The incorporation of coagulating agents did not ameliorate membrane fouling problems.

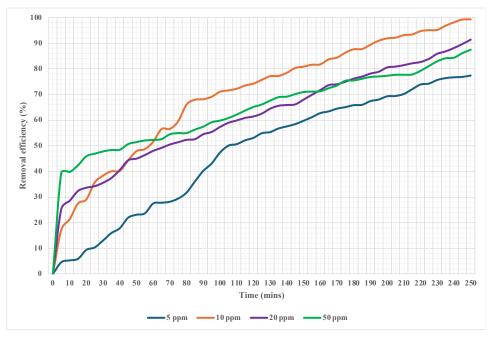


Figure 4: PEP Removal Efficiency

In processing pharmaceutical factory WW utilizing MBR-NF procedures, with the NF concentrate returned to the MBR, elimination rates for antibiotics like spiramycin surpassed 95%, markedly diminishing the acute toxicity in the effluent. Figure 4 shows the PEP removal efficiency of different size particles. Mitigating membrane fouling challenges in integrated processes is essential.

Disparities existed in the inorganic/organic proportions between the two systems, with the system exhibiting elevated organic compound levels, comprising just one-third of those found in the systems. Distinct membrane-cleaning methodologies were necessitated for each system. Scientists have suggested

improvements for the MBR process to mitigate membrane fouling. The device was developed to improve biological breakdown rates and reduce RO fouling of membranes. The rise in saltiness did not impede biological activity; instead, the enhanced retention capacity extended biological material's metabolism duration and improved the degrading efficacy.

V. Conclusion

Innumerable research in recent years has documented the prevalence of invasive PEPs in water supplies, which has had harmful consequences on human wellness, sanitation, and ecology. This circumstance has generated continuing demand from scientists for better methods for WT since attenuation occurs naturally, and traditional treatment techniques are not suitable to eliminate all the developing PEPs. An overview of sophisticated methods utilizing MBSPs for the cost-effective removal of harmful PEPs from water supplies is essential in the current context. PEPs arise from various sources, including manufactured chemicals, medicinal substances, organic ingredients, and biological entities like bacteria. Their treatment methods differ significantly based on the characteristics of the effluent.

Among the various traditional methods, MBSPs, primarily NF and RO techniques, have effectively eliminated numerous persistent organic pollutants. In certain circumstances, blended technology is more applicable. The newly established hybrid MBR and FO procedures, in conjunction with methodologies such as AOPs, have gained significant popularity in the current context. It becomes apparent that notwithstanding various inherent constraints, the MBSPs are extremely efficient in attaining removal efficiency relative to other traditional WT systems. The primary trends in this domain are emphasized, accompanied by suggestions for further enhancements and improvements in the current situation and identification regarding knowledge shortages and future trajectories.

References

- [1] Balakumar, S., Mahesh, N., Kamaraj, M., Saranya, T., Babu, P. S., Aravind, J., ... & Govarthanan, M. (2024). Customized carbon composite nanomaterials for the mitigation of emerging contaminants: a review of recent trends. *Carbon Letters*, *34*(4), 1091-1114. https://doi.org/10.1007/s42823-024-00715-3
- [2] Méndez, E., González-Fuentes, M. A., Rebollar-Perez, G., Méndez-Albores, A., & Torres, E. (2017). Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. *Journal of Environmental Science and Health, Part A*, 52(3), 235-253. https://doi.org/10.1080/10934529.2016.1253391
- [3] Tanudjaja, H. J., Hejase, C. A., Tarabara, V. V., Fane, A. G., & Chew, J. W. (2019). Membrane-based separation for oily wastewater: A practical perspective. *Water research*, *156*, 347-365. https://doi.org/10.1016/j.watres.2019.03.021
- [4] Davoodbeygi, Y., Askari, M., Salehi, E., & Kheirieh, S. (2023). A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. *Journal of Environmental Management*, 335, 117577. https://doi.org/10.1016/j.jenvman.2023.117577
- [5] Baguma, G., Bamanya, G., Gonzaga, A., Ampaire, W., & Onen, P. (2023). A Systematic Review of Contaminants of Concern in Uganda: Occurrence, Sources, Potential Risks, and Removal Strategies. *Pollutants*, *3*(4), 544-586. https://doi.org/10.3390/pollutants3040037
- [6] Sangamnere, R., Misra, T., Bherwani, H., Kapley, A., & Kumar, R. (2023). A critical review of conventional and emerging wastewater treatment technologies. *Sustainable Water Resources Management*, 9(2), 58. https://doi.org/10.1007/s40899-023-00829-y
- [7] Song, L., Heiranian, M., & Elimelech, M. (2021). True driving force and characteristics of water transport in osmotic membranes. *Desalination*, *520*, 115360. https://doi.org/10.1016/j.desal.2021.115360